
torchgpipe
Release 0.0.3

Sep 30, 2019

Contents

1 What is GPipe? 3

2 Documentations 5
2.1 Understanding GPipe . 5
2.2 User Guide . 6
2.3 API . 11
2.4 Benchmarks . 13
2.5 Changelog . 14

3 Authors and Licensing 17

Index 19

i

ii

torchgpipe, Release 0.0.3

A GPipe implementation in PyTorch.

from torchgpipe import GPipe

model = nn.Sequential(a, b, c, d)
model = GPipe(model, balance=[1, 1, 1, 1], chunks=8)

for input in data_loader:
output = model(input)

Contents 1

https://arxiv.org/abs/1811.06965
https://pytorch.org/

torchgpipe, Release 0.0.3

2 Contents

CHAPTER 1

What is GPipe?

GPipe is a scalable pipeline parallelism library published by Google Brain, which allows efficient training of large,
memory-consuming models. According to the paper, GPipe can train a 25x larger model by using 8x devices (TPU),
and train a model 3.5x faster by using 4x devices.

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Google trained AmoebaNet-B with 557M parameters over GPipe. This model has achieved 84.3% top-1 and 97.0%
top-5 accuracy on ImageNet classification benchmark (the state-of-the-art performance as of May 2019).

3

https://arxiv.org/abs/1811.06965

torchgpipe, Release 0.0.3

4 Chapter 1. What is GPipe?

CHAPTER 2

Documentations

2.1 Understanding GPipe

GPipe uses (a) Pipeline Parallelism and (b) automatic recomputation of the forward propagation during the back-
propagation, hence leverages training a large model. We refer to (b) as Checkpointing, following the well-known
terminology in PyTorch community.

2.1.1 Pipeline Parallelism

GPipe splits a model into multiple partitions and places each partition on a different device to occupy more memory
capacity. For example, we may split a model occupying 40GB of CUDA memory into 4 partitions each occupying
10GB, respectively.

This approach is called model parallelism. However, typical deep learning models are composed of sequential layers.
In other words, usually the latter layer wouldn’t work until the prior layer has finished. If a model is composed of fully
sequential layers, even if we spread the model over two or more devices, only one device can be utilized at once.

GPipe splits a mini-batch into multiple micro-batches to make the devices work as parallel as possible. It is called
pipeline parallelism. Basically, pipeline parallelism is a stack of small data parallelism. When each partition has
finished processing a micro-batch, it can toss the output to the next partition and immediately can start to work on the
next micro-batch. Now the partitions can be overlapped.

See also:

Model Parallel Best Practices in PyTorch Tutorials

There is still idle time called bubble because every partition has to wait for the first micro-batch from the prior partition.
The bubble can be reduced by choosing a smaller size of micro-batches. But usually, larger batch size can utilize GPU
more efficiently. Hence, GPU may be underutilized if too small size of micro-batches is chosen.

5

https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html

torchgpipe, Release 0.0.3

A faster partition should wait for adjacent slower partition. Therefore, imbalance over partitions also may cause GPU
underutilization. Note that the overall performance is determined by the slowest partition.

2.1.2 Checkpointing

Checkpointing is applied to each partition to minimize the overall memory consumption by a model. During forward
propagation, only the tensors at the boundaries between partitions are remembered. All other intermediate tensors are
volatilized, and recomputed during backpropagation when necessary. Specifically, hidden layers consume the memory
which is required by only a single micro-batch with checkpointing.

Checkpointing is a trade-off between performance and memory, because recomputation spends time just as much
as the forward propagation. When you use torchgpipe.GPipe, you can decide to turn off checkpointing by
checkpoint='never' option.

2.1.3 Deferred Batch Normalization

One of the goals of GPipe is transparency. GPipe shouldn’t affect existing hyperparameters and output during training.
However, if a module processes per mini-batch, not per single sample, it might be affected by GPipe since each module
could see only a micro-batch at once.

Meanwhile, batch normalization is a module commonly used in CNN. The forward propagation of this module per-
forms two procedures in training. Both the procedures are per mini-batch, not micro-batch:

1. Normalizing a mini-batch by the average and variance of the just given mini-batch.

2. Tracking moving statistics (mean and variance) of mini-batches to normalize batches in evaluation.

GPipe couldn’t provide transparency for the first procedure (normalization). Per mini-batch normalization introduces
a dependency among the micro-batches, hence it breaks the parallelism of GPipe. But the second procedure (tracking
moving statistics) could be transparent with GPipe by accumulating statistics of all micro-batches.

torchgpipe provides this functionality as deferred batch normalization. But in the current implementation, it is
slower than the vanilla batch normalization. That is why we turn off by default. If you need transparent moving
statistics, turn on by deferred_batch_norm=True option in GPipe:

model = GPipe(model, balance=[1, 1, 1, 1], chunks=8,
Turn on deferred batch normalization.
deferred_batch_norm=True)

2.2 User Guide

2.2.1 Installation

torchgpipe is available on PyPI. Install by pip:

$ pip install torchgpipe

Python 3.6+ (CPython) is required.

PyTorch 1.1+ will be installed automatically if you don’t have a satisfied one. However, we highly recommend you to
use the latest version of PyTorch.

6 Chapter 2. Documentations

https://pypi.org/project/torchgpipe

torchgpipe, Release 0.0.3

2.2.2 Applying GPipe

To train a module with GPipe, simply wrap it with torchgpipe.GPipe. Your module must be nn.Sequential
as GPipe will automatically split the module into partitions with consecutive layers. balance argument determines
the number of layers in each partition. chunks argument specifies the number of micro-batches. Input, output, and
intermediate tensors must be Tensor or Tuple[Tensor, ...]. See also Restrictions for more details.

The below example code shows how to split a module with four layers into four partitions each having a single layer.
This code also splits a mini-batch into 8 micro-batches:

from torchgpipe import GPipe

model = nn.Sequential(a, b, c, d)
model = GPipe(model, balance=[1, 1, 1, 1], chunks=8)

for input in data_loader:
output = model(input)

GPipe optimizes training using CUDA. You should not move the module to a GPU yourself, because GPipe automat-
ically moves each partition over different devices. By default, available GPUs starting from cuda:0 are selected in
order for each partition. You can also specify GPUs to use with devices parameter:

model = GPipe(model,
balance=[1, 1, 1, 1],
devices=[4, 5, 6, 7], # Specify GPUs.
chunks=8)

The typical model parallelism is a special case of GPipe. GPipe without micro-batches and checkpointing is equivalent
to model parallelism. You can disable them with chunks=1 and checkpoint='never' options:

model = GPipe(model, balance=[2, 2], chunks=1, checkpoint='never')

2.2.3 Input and Output Device

Unlike a typical module, with GPipe, the input device is different from the output device except for when there is only
one partition. This is because the first partition and last partition are placed in different devices.

Therefore, you have to move the input and target to the corresponding devices. It can be done with GPipe.devices,
which holds the list of devices for each partition:

in_device = model.devices[0]
out_device = model.devices[-1]

for input, target in data_loader:
input on in_device
input = input.to(in_device, non_blocking=True)

target on out_device
target = target.to(out_device, non_blocking=True)

output on out_device
output = model(input)
loss = F.cross_entropy(output, target)
loss.backward()
...

2.2. User Guide 7

https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential

torchgpipe, Release 0.0.3

2.2.4 Automatic Balancing

It could be hard to determine the optimal balance of a model. In particular, if you are still designing a model, the
model architecture may change over time. In this case, we highly recommend torchgpipe_balancing for
automatic balancing. This won’t give you the optimal balance, but a good-enough balance. Note that this is provided
by torchgpipe package, and is not from the GPipe paper.

There are two balancing tools, balance_by_time() and balance_by_size(). Both are based on per-layer
profiling. Just like PyTorch JIT, you need to feed a sample input into the model. balance_by_time() traces
elapsed time of each layer, while balance_by_size() detects the CUDA memory usage of each layer. Choose
the balancing tool for your needs:

from torchgpipe import GPipe
from torchgpipe_balancing import balance_by_time

sample = torch.rand(128, 3, 224, 224)
balance = balance_by_time(model, sample, partitions=4)

model = GPipe(model, balance, chunks=8)

2.2.5 Trade-offs

Number of Micro-batches

Number of micro-batches has a trade-off between GPU utilization per micro-batch and total area of bubble. You need
to find the best number of micro-batches for your model.

GPU may slow down when processing many small micro-batches compared to larger micro-batches. GPU will not
be fully utilized if each CUDA kernel is too cheap to compute, hence too small micro-batches cause underutilization.
On the other hand, the area of bubble is minimized when the size of each micro-batch is minimal. Ideally, you should
choose the largest number of micro-batches that doesn’t underutilize GPUs.

As a side note, BatchNorm tends to perform worse with smaller batch size. Large number of micro-batches may affect
the final performance of model using BatchNorm negatively just like in nn.DataParallel.

Checkpointing

Checkpointing drastically helps to reduce memory usage, but the overall training would slow down by about 25%.
You can handle how to apply checkpointing on your model. There are three options:

• always – Apply checkpointing over all micro-batches.

• except_last (default) – Apply checkpointing except the last micro-batch.

• never – Checkpointing is never applied.

Usually, checkpointing at the last micro-batch may not be useful because the saved memory will be reconstructed
immediately. That’s why we choose except_last as the default option.

If you decide not to use checkpointing at all, nn.DataParallel might be more efficient than GPipe.

2.2.6 Referential Transparency

Checkpointing executes forward propagation again at backpropagation, which is called recomputation. We assume
that both the executions are identical. Hence, all layers should be referentially transparent in forward propagation.
Here are the typical cases that break referential transparency:

8 Chapter 2. Documentations

https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/nn.html#torch.nn.DataParallel
https://pytorch.org/docs/stable/nn.html#torch.nn.DataParallel
https://en.wikipedia.org/wiki/Referential_transparency

torchgpipe, Release 0.0.3

In-place Operations: We do not recommend using in-place operations with checkpointing. Especially, if an in-place
operation such as add_(1) is applied to the input of a checkpointed partition, then the recomputation can’t
recover the original input.

Nondeterminism: For example, nn.Dropout will produce different mask in recomputation from the forward prop-
agation due to the randomness. This type of nondeterministic behaviors are not taken care of in torchgpipe yet.

Side Effects: Some modules such as BatchNorm update their state in forward propagation. Hence, updated state in
recomputation might not be identical to the original state.

2.2.7 Restrictions

If you get any errors, check the following restrictions first.

Sequential: Your module must be nn.Sequential. For example, the models in torchvision are not sequen-
tial. They can’t be wrapped by GPipe directly:

>>> from torchvision.models.resnet import resnet101
>>> model = resnet101()
>>> type(model)
torchvision.models.resnet.ResNet
>>> GPipe(model, balance=..., chunks=...)
Traceback (most recent call last)
...

TypeError: module must be nn.Sequential to be partitioned

See the sequential ResNet example to figure out how to make a model into a nn.Sequential model.

nn.Sequential assumes that every underlying layer takes only one argument. Calling forward(x) on
nn.Sequential(A(), B(), C()) is essentially the same as calling C(B(A(x))). Hence, you can’t
design an underlying layer with multiple arguments:

class MyModule(nn.Module):
def forward(self, a, b, c):

return a + b - c

model = nn.Sequential(..., MyModule(), ...)
model(input) # FAILS!

Tensor or Tensors: As we discussed above, each layer must take only one argument due to nn.Sequential.
There is one more restriction. Every underlying layers’ input and output must be Tensor or Tuple[Tensor,
...]:

OK
def forward(input: Tensor) -> Tensor: ...
def forward(input: Tensor) -> Tuple[Tensor, Tensor]: ...
def forward(input: Tuple[Tensor, Tensor]) -> Tensor: ...

Error
def forward(input1: Tensor, input2: Tensor) -> Tensor: ...
def forward(input: Tensor, label: str) -> Tensor: ...
def forward(input: Tensor) -> Dict[str, Tensor]: ...
def forward(input: Tensor) -> Tuple[Tensor, str]: ...

The reason is that GPipe can’t assume how the non-tensor inputs for a mini-batch can be split for micro-batches.

Unique Parameters: GPipe places each partition on the corresponding device. When placing a partition, the pa-
rameters of the partition are also moved to the destination. GPipe cannot support a module with a parameter on

2.2. User Guide 9

https://pytorch.org/docs/stable/nn.html#torch.nn.Dropout
https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential
https://pytorch.org/docs/stable/torchvision/index.html#module-torchvision
https://github.com/kakaobrain/torchgpipe/tree/master/examples/resnet
https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential
https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential
https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential

torchgpipe, Release 0.0.3

two or more devices:

>>> conv1 = nn.Conv2d(3, 3, 1)
>>> conv2 = nn.Conv2d(3, 3, 1)
>>> conv1.weight = conv2.weight
>>> model = nn.Sequential(conv1, conv2)
>>> model = GPipe(model, balance=[1, 1], ...)
Traceback (most recent call last)
...

ValueError: module with duplicate parameters in distinct children is not supported

2.2.8 Complex Modules

This part of the documentation discusses how to implement a complex module compatible with GPipe. First, you
should understand how GPipe works. See Understanding GPipe.

Skip Connections

Many deep learning models, such as ResNet or AmoebaNet, contain skip connections. There are two ways to imple-
ment skip connections. Let’s assume we have to implement a skip connection like this:

latent = layer1(input)
latent = layer2(latent)
output = layer3(latent) + input # skip connection

To make this module sequential, we define modules for each layer. Simply, a skip connection can be implemented by
making underlying layers with Tuple[Tensor, Tensor] parameter and return type:

class Layer1(nn.Module):
#
input -- -+-> layer1 ---- --> output
'-------------- --> skip
#
def forward(self, input: Tensor) -> Tuple[Tensor, Tensor]:

return layer1(input), input

class Layer2(nn.Module):
#
input -- ---> layer2 ---- --> output
skip -- ---------------- --> skip
#
def forward(self, input_and_skip: Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tensor]:

input, skip = input_and_skip
return layer2(input), skip

class Layer3(nn.Module):
#
input -- ---> layer3 --+- --> output
skip -- --------------'
#
def forward(self, input_and_skip: Tuple[Tensor, Tensor]) -> Tensor:

input, skip = input_and_skip
return layer3(input) + skip

model = nn.Sequential(Layer1(), Layer2(), Layer3())

10 Chapter 2. Documentations

torchgpipe, Release 0.0.3

Because of the skip connection being represented as a normal parameter, GPipe can move the tensors from partition
to partition:

model = GPipe(model, balance=[1, 1, 1], chunks=8)

It is the most straightforward approach to implement skip connections. But there is a disadvantage. In the above
example, the skip tensor is copied to the second device, but it is never used on the second device. Unnecessarily
copying tensor wastes time and memory.

Detecting Recomputation

Checkpointing in GPipe performs forward propagations twice. The second forward propagation is called recomputa-
tion. This may cause a problem when a module such as nn.BatchNorm2d updates its running estimates of batch
statistics on each forward propagation. It should not update the running estimates again during the recomputation.
To avoid updating the running estimates twice, modules’ forward method needs be able to detect that this is the
recomputation.

It can be done by is_recomputing(). This function returns True if called during the recomputation:

class Counter(nn.Module):
def __init__(self):

super().__init__()
self.counter = 0

def forward(self, input):
if not is_recomputing():

self.counter += 1
return input

Note: deferred_batch_norm=True on GPipe will prevent updating the running statistics twice.

2.3 API

2.3.1 GPipe Module

class torchgpipe.GPipe(module, balance, **kwargs)
Wraps an arbitrary nn.Sequential module to train on GPipe. If the module requires lots of memory, GPipe
will be very efficient:

model = nn.Sequential(a, b, c, d)
model = GPipe(model, balance=[1, 1, 1, 1], chunks=8)
output = model(input)

GPipe combines pipeline parallelism with checkpointing to reduce peak memory required to train while mini-
mizing device under-utilization.

You should determine the balance when defining a GPipe module, as balancing will not be done automatically.
The module will be partitioned into multiple devices according to the given balance. You may rely on heuristics
to find your own optimal configuration.

Parameters

• module (nn.Sequential) – sequential module to be parallelized

2.3. API 11

https://pytorch.org/docs/stable/nn.html#torch.nn.BatchNorm2d
https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential
https://arxiv.org/abs/1811.06965

torchgpipe, Release 0.0.3

• balance (ints) – list of number of layers in each partition

Keyword Arguments

• devices (iterable of devices) – devices to use (default: all CUDA devices)

• chunks (int) – number of micro-batches (default: 1)

• checkpoint (str) – when to enable checkpointing, one of 'always',
'except_last', or 'never' (default: 'except_last')

• deferred_batch_norm (bool) – whether to use deferred BatchNorm moving statistics
(default: False, See Deferred BatchNorm for more details)

Raises

• TypeError – the module is not a nn.Sequential.

• ValueError – invalid arguments, or wrong balance

• IndexError – the number of devices is fewer than the number of partitions.

forward(input)
GPipe is a fairly transparent module wrapper. It doesn’t modify the input and output signature of the
underlying module. But there’s type restriction. Input and output have to be a Tensor or a tuple of
tensors. This restriction is applied at partition boundaries too.

Parameters input (tensor or tensors) – input mini-batch

Returns output mini-batch

Return type tensor or tensors

Raises TypeError – input is not a tensor or tensors.

devices
The devices mapped to each partition.

devices[-1] refers to the device of the last partition, which means it is the output device. Probably,
you need to use it to transfer the target to calculate the loss without a device mismatch RuntimeError.
For example:

out_device = gpipe.devices[-1]

for input, target in loader:
target = target.to(out_device, non_blocking=True)
output = gpipe(input)
loss = F.cross_entropy(output, target)

2.3.2 Inspecting GPipe Timeline

torchgpipe.is_recomputing()
Whether if the current thread is under checkpoint recomputation.

Returns True if it’s under checkpoint recomputation.

Return type bool

See also:

Detecting Recomputation

12 Chapter 2. Documentations

https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgpipe, Release 0.0.3

2.3.3 Automatic Balancing

torchgpipe_balancing.balance_by_time(module, canary, partitions, device, timeout)
Balances the given seqeuntial module by elapsed time per layer.

Parameters

• module (nn.Sequential) – sequential module to be partitioned

• sample (Tensor) – example input

Keyword Arguments

• partitions (int) – intended number of partitions (default: 1)

• device (torch.device) – CUDA device where the module is profiled (default: any
related CUDA device or torch.device('cuda'))

• timeout (float) – profiling iterates again if the timeout (in second) is not exceeded
(default: 1.0)

Returns A list of number of layers in each partition. Use it for the balance parameter of GPipe.

torchgpipe_balancing.balance_by_size(module, canary, partitions, device)
Balances the given seqeuntial module by memory usage per layer.

Note: This function relies on torch.cuda.reset_max_memory_allocated() which is introduced
at PyTorch 1.1. Therefore, it doesn’t support neither CPU tensors nor PyTorch 1.0.x.

Parameters

• module (nn.Sequential) – sequential module to be partitioned

• sample (Tensor) – example input

Keyword Arguments

• partitions (int) – intended number of partitions (default: 1)

• device (torch.device) – CUDA device where the module is profiled (default: any
related CUDA device or torch.device('cuda'))

Returns A list of number of layers in each partition. Use it for the balance parameter of GPipe.

2.4 Benchmarks

2.4.1 ResNet-101 Speed Benchmark

Experiment Throughput Speedup
naive-1 92.539 samples/sec 1.000x
pipeline-1 69.960 samples/sec 0.756x
pipeline-2 137.788 samples/sec 1.489x
pipeline-4 243.322 samples/sec 2.629x
pipeline-8 404.084 samples/sec 4.367x

The code is reproducible on Tesla P40 GPUs, and the experiment details can be found in exam-
ples/resnet101_speed_benchmark.

2.4. Benchmarks 13

https://pytorch.org/docs/stable/cuda.html#torch.cuda.reset_max_memory_allocated
https://github.com/kakaobrain/torchgpipe/tree/master/examples/resnet101_speed_benchmark
https://github.com/kakaobrain/torchgpipe/tree/master/examples/resnet101_speed_benchmark

torchgpipe, Release 0.0.3

2.4.2 ResNet-101 Accuracy Benchmark

Experiment Top-1 error (%)
dataparallel-256 22.02±0.11
dataparallel-1k 22.04±0.24
pipeline-256 21.99±0.13
pipeline-1k 22.24±0.19
pipeline-4k 22.13±0.09

The code is reproducible on Tesla P40 GPUs, and the experiment details can be found in exam-
ples/resnet101_accuracy_benchmark.

2.4.3 AmoebaNet-D Speed Benchmark

Experiment Throughput Speedup
naive-2 14.188 samples/sec 1.000x
pipeline-2 20.346 samples/sec 1.434x
pipeline-4 29.074 samples/sec 2.049x
pipeline-8 34.392 samples/sec 2.424x

The code is reproducible on Tesla P40 GPUs, and the experiment details can be found in exam-
ples/amoebanetd_speed_benchmark.

2.4.4 AmoebaNet-D Memory Benchmark

Experi-
ment

AmoebaNet-D
(L, F)

of Model Param-
eters

Total Model Parameter
Memory

Total Peak Activation
Memory

naive-1 (6, 208) 90M 1.00GB –
pipeline-1 (6, 416) 358M 4.01GB 6.64GB
pipeline-2 (6, 544) 613M 6.45GB 11.31GB
pipeline-4 (12, 544) 1.16B 13.00GB 18.72GB
pipeline-8 (24, 512) 2.01B 22.42GB 35.78GB

2.5 Changelog

2.5.1 v0.0.3

Released on September 30, 2019.

Featured: torchgpipe now overlaps copy and computation using the separate CUDA streams. Previously, GPU could
not compute a partition while copying micro-batches across different GPUs because they all happened on the
same default CUDA stream.

Other Improvements:

• Added support for PyTorch 1.2.

• Redesigned the internal pipeline parallelism to represent dependencies transparently.

14 Chapter 2. Documentations

https://github.com/kakaobrain/torchgpipe/tree/master/examples/resnet101_accuracy_benchmark
https://github.com/kakaobrain/torchgpipe/tree/master/examples/resnet101_accuracy_benchmark
https://github.com/kakaobrain/torchgpipe/tree/master/examples/amoebanetd_speed_benchmark
https://github.com/kakaobrain/torchgpipe/tree/master/examples/amoebanetd_speed_benchmark

torchgpipe, Release 0.0.3

• Fixed the hanging issue when an exception is raised in a partition.

• Fixed the unintended size accumulation (issue #3 by Shiyan Deng) of balance_by_size().

Breaking Changes:

• No more support for PyTorch 1.0.

• Changed type of GPipe.devices from tuple to list.

• Removed current_microbatch. This approach turned out to be incompatible with checkpointing.

2.5.2 v0.0.2

Released on June 26, 2019.

• Added support for PyTorch 1.1.

• Refined public APIs.

• Detailed documentation.

• Proper exceptions for invalid usage.

• Provided automatic balancing.

• Provided inspecting utilities: current_microbatch (DO NOT USE, deprecated since v0.0.3) and
is_recomputing()

• Reimplemented deferred batch normalization by subclassing.

2.5.3 v0.0.1

Released on May 14, 2019 to evaluate usability and efficiency internally.

• Provided a functional GPipe implementation, including pipeline parallelism, checkpointing, and deferred batch
normalization.

• Supported Python 3.6+ and PyTorch 1.0.

2.5. Changelog 15

https://github.com/kakaobrain/torchgpipe/issues/3
https://github.com/842974287

torchgpipe, Release 0.0.3

16 Chapter 2. Documentations

CHAPTER 3

Authors and Licensing

This project is developed by Heungsub Lee, Myungryong Jeong, and Chiheon Kim at Kakao Brain, with Sungbin
Lim, Ildoo Kim, and Woonhyuk Baek’s help. It is distributed under Apache License 2.0.

If you apply this library to any project and research, please cite our code:

@misc{torchgpipe,
author = {Kakao Brain},
title = {torchgpipe, {A} {GPipe} implementation in {PyTorch}},
howpublished = {\url{https://github.com/kakaobrain/torchgpipe}},
year = {2019}

}

17

https://subl.ee/
https://github.com/mrJeong
https://github.com/chiheonk
https://kakaobrain.com/
https://github.com/sungbinlim
https://github.com/sungbinlim
https://github.com/ildoonet
https://github.com/wbaek

torchgpipe, Release 0.0.3

18 Chapter 3. Authors and Licensing

Index

B
balance_by_size() (in module torchg-

pipe_balancing), 13
balance_by_time() (in module torchg-

pipe_balancing), 13

D
devices (torchgpipe.GPipe attribute), 12

F
forward() (torchgpipe.GPipe method), 12

G
GPipe (class in torchgpipe), 11

I
is_recomputing() (in module torchgpipe), 12

19

	What is GPipe?
	Documentations
	Understanding GPipe
	User Guide
	API
	Benchmarks
	Changelog

	Authors and Licensing
	Index

