

torchgpipe

A GPipe [https://arxiv.org/abs/1811.06965] implementation in PyTorch [https://pytorch.org/].

from torchgpipe import GPipe

model = nn.Sequential(a, b, c, d)
model = GPipe(model, balance=[1, 1, 1, 1], chunks=8)

for input in data_loader:
 output = model(input)

What is GPipe?

GPipe is a scalable pipeline parallelism library published by Google Brain,
which allows efficient training of large, memory-consuming models. According to
the paper, GPipe can train a 25x larger model by using 8x devices (TPU), and
train a model 3.5x faster by using 4x devices.

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism [https://arxiv.org/abs/1811.06965]

Google trained AmoebaNet-B with 557M parameters over GPipe. This model has
achieved 84.3% top-1 and 97.0% top-5 accuracy on ImageNet classification
benchmark (the state-of-the-art performance as of May 2019).

Documentations

	Understanding GPipe
	Pipeline Parallelism

	Checkpointing

	Deferred Batch Normalization

	User Guide
	Installation

	Applying GPipe

	Input and Output Device

	Automatic Balancing

	Trade-offs

	Referential Transparency

	Restrictions

	Complex Modules

	API
	GPipe Module

	Inspecting GPipe Timeline

	Automatic Balancing

	Benchmarks
	ResNet-101 Speed Benchmark

	ResNet-101 Accuracy Benchmark

	AmoebaNet-D Speed Benchmark

	AmoebaNet-D Memory Benchmark

	Changelog
	v0.0.3

	v0.0.2

	v0.0.1

Authors and Licensing

This project is developed by Heungsub Lee [https://subl.ee/], Myungryong Jeong [https://github.com/mrJeong], and Chiheon
Kim [https://github.com/chiheonk] at Kakao Brain [https://kakaobrain.com/], with Sungbin Lim [https://github.com/sungbinlim], Ildoo Kim [https://github.com/ildoonet], and Woonhyuk
Baek [https://github.com/wbaek]’s help. It is distributed under Apache License 2.0.

If you apply this library to any project and research, please cite our code:

@misc{torchgpipe,
 author = {Kakao Brain},
 title = {torchgpipe, {A} {GPipe} implementation in {PyTorch}},
 howpublished = {\url{https://github.com/kakaobrain/torchgpipe}},
 year = {2019}
}

Understanding GPipe

GPipe uses (a) Pipeline Parallelism and (b) automatic recomputation of
the forward propagation during the backpropagation, hence leverages training a
large model. We refer to (b) as Checkpointing, following the well-known
terminology in PyTorch community.

Pipeline Parallelism

GPipe splits a model into multiple partitions and places each partition on a
different device to occupy more memory capacity. For example, we may split a
model occupying 40GB of CUDA memory into 4 partitions each occupying 10GB,
respectively.

This approach is called model parallelism. However, typical deep learning
models are composed of sequential layers. In other words, usually the latter
layer wouldn’t work until the prior layer has finished. If a model is composed
of fully sequential layers, even if we spread the model over two or more
devices, only one device can be utilized at once.

[image: _images/model-parallel.svg]

GPipe splits a mini-batch into multiple micro-batches to make the devices work
as parallel as possible. It is called pipeline parallelism. Basically,
pipeline parallelism is a stack of small data parallelism. When each partition
has finished processing a micro-batch, it can toss the output to the next
partition and immediately can start to work on the next micro-batch. Now the
partitions can be overlapped.

[image: _images/pipeline-parallel.svg]

See also

Model Parallel Best Practices in PyTorch Tutorials [https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html]

There is still idle time called bubble because every partition has to wait
for the first micro-batch from the prior partition. The bubble can be reduced
by choosing a smaller size of micro-batches. But usually, larger batch size can
utilize GPU more efficiently. Hence, GPU may be underutilized if too small size
of micro-batches is chosen.

A faster partition should wait for adjacent slower partition. Therefore,
imbalance over partitions also may cause GPU underutilization. Note that the
overall performance is determined by the slowest partition.

Checkpointing

Checkpointing is applied to each partition to minimize the overall memory
consumption by a model. During forward propagation, only the tensors at the
boundaries between partitions are remembered. All other intermediate tensors
are volatilized, and recomputed during backpropagation when necessary.
Specifically, hidden layers consume the memory which is required by only a
single micro-batch with checkpointing.

Checkpointing is a trade-off between performance and memory, because
recomputation spends time just as much as the forward propagation. When you use
torchgpipe.GPipe, you can decide to turn off checkpointing by
checkpoint='never' option.

Deferred Batch Normalization

One of the goals of GPipe is transparency. GPipe shouldn’t affect existing
hyperparameters and output during training. However, if a module processes per
mini-batch, not per single sample, it might be affected by GPipe since each
module could see only a micro-batch at once.

Meanwhile, batch normalization is a module commonly used in CNN. The forward
propagation of this module performs two procedures in training. Both the
procedures are per mini-batch, not micro-batch:

	Normalizing a mini-batch by the average and variance of the just given
mini-batch.

	Tracking moving statistics (mean and variance) of mini-batches to normalize
batches in evaluation.

GPipe couldn’t provide transparency for the first procedure (normalization).
Per mini-batch normalization introduces a dependency among the micro-batches,
hence it breaks the parallelism of GPipe. But the second procedure (tracking
moving statistics) could be transparent with GPipe by accumulating statistics
of all micro-batches.

torchgpipe provides this functionality as deferred batch
normalization. But in the current implementation, it is slower than the
vanilla batch normalization. That is why we turn off by default. If you need
transparent moving statistics, turn on by deferred_batch_norm=True option
in GPipe:

model = GPipe(model, balance=[1, 1, 1, 1], chunks=8,
 # Turn on deferred batch normalization.
 deferred_batch_norm=True)

User Guide

Installation

torchgpipe is available on PyPI [https://pypi.org/project/torchgpipe]. Install by pip:

$ pip install torchgpipe

Python 3.6+ (CPython) is required.

PyTorch 1.1+ will be installed automatically if you don’t have a satisfied one.
However, we highly recommend you to use the latest version of PyTorch.

Applying GPipe

To train a module with GPipe, simply wrap it with torchgpipe.GPipe.
Your module must be nn.Sequential [https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential] as GPipe will
automatically split the module into partitions with consecutive layers.
balance argument determines the number of layers in each partition. chunks
argument specifies the number of micro-batches. Input, output, and intermediate
tensors must be Tensor or Tuple[Tensor, ...]. See also Restrictions
for more details.

The below example code shows how to split a module with four layers into four
partitions each having a single layer. This code also splits a mini-batch into
8 micro-batches:

from torchgpipe import GPipe

model = nn.Sequential(a, b, c, d)
model = GPipe(model, balance=[1, 1, 1, 1], chunks=8)

for input in data_loader:
 output = model(input)

GPipe optimizes training using CUDA. You should not move the module to a GPU
yourself, because GPipe automatically moves each partition over different
devices. By default, available GPUs starting from cuda:0 are selected in
order for each partition. You can also specify GPUs to use with devices
parameter:

model = GPipe(model,
 balance=[1, 1, 1, 1],
 devices=[4, 5, 6, 7], # Specify GPUs.
 chunks=8)

The typical model parallelism is a special case of GPipe. GPipe without
micro-batches and checkpointing is equivalent to model parallelism. You can
disable them with chunks=1 and checkpoint='never' options:

model = GPipe(model, balance=[2, 2], chunks=1, checkpoint='never')

Input and Output Device

Unlike a typical module, with GPipe, the input device is different from the
output device except for when there is only one partition. This is because the
first partition and last partition are placed in different devices.

Therefore, you have to move the input and target to the corresponding devices.
It can be done with GPipe.devices, which
holds the list of devices for each partition:

in_device = model.devices[0]
out_device = model.devices[-1]

for input, target in data_loader:
 # input on in_device
 input = input.to(in_device, non_blocking=True)

 # target on out_device
 target = target.to(out_device, non_blocking=True)

 # output on out_device
 output = model(input)
 loss = F.cross_entropy(output, target)
 loss.backward()
 ...

Automatic Balancing

It could be hard to determine the optimal balance of a model. In particular, if
you are still designing a model, the model architecture may change over time.
In this case, we highly recommend torchgpipe_balancing for automatic
balancing. This won’t give you the optimal balance, but a good-enough balance.
Note that this is provided by torchgpipe package, and is not from the GPipe
paper.

There are two balancing tools, balance_by_time()
and balance_by_size(). Both are based on per-layer
profiling. Just like PyTorch JIT [https://pytorch.org/docs/stable/jit.html], you need to feed a sample input into the
model. balance_by_time() traces elapsed time of
each layer, while balance_by_size() detects the
CUDA memory usage of each layer. Choose the balancing tool for your needs:

from torchgpipe import GPipe
from torchgpipe_balancing import balance_by_time

sample = torch.rand(128, 3, 224, 224)
balance = balance_by_time(model, sample, partitions=4)

model = GPipe(model, balance, chunks=8)

Trade-offs

Number of Micro-batches

Number of micro-batches has a trade-off between GPU utilization per micro-batch
and total area of bubble. You need to find the best number of micro-batches for
your model.

GPU may slow down when processing many small micro-batches compared to larger
micro-batches. GPU will not be fully utilized if each CUDA kernel is too cheap
to compute, hence too small micro-batches cause underutilization. On the other
hand, the area of bubble is minimized when the size of each micro-batch is
minimal. Ideally, you should choose the largest number of micro-batches that
doesn’t underutilize GPUs.

As a side note, BatchNorm tends to perform worse with smaller batch size. Large
number of micro-batches may affect the final performance of model using
BatchNorm negatively just like in nn.DataParallel [https://pytorch.org/docs/stable/nn.html#torch.nn.DataParallel].

Checkpointing

Checkpointing drastically helps to reduce memory usage, but the overall
training would slow down by about 25%. You can handle how to apply
checkpointing on your model. There are three options:

	always – Apply checkpointing over all micro-batches.

	except_last (default) – Apply checkpointing except the last micro-batch.

	never – Checkpointing is never applied.

Usually, checkpointing at the last micro-batch may not be useful because the
saved memory will be reconstructed immediately. That’s why we choose
except_last as the default option.

If you decide not to use checkpointing at all, nn.DataParallel [https://pytorch.org/docs/stable/nn.html#torch.nn.DataParallel] might be more efficient than GPipe.

Referential Transparency

Checkpointing executes forward propagation again at backpropagation, which is
called recomputation. We assume that both the executions are identical.
Hence, all layers should be referentially transparent [https://en.wikipedia.org/wiki/Referential_transparency] in forward
propagation. Here are the typical cases that break referential transparency:

	In-place Operations:

	We do not recommend using in-place operations with checkpointing.
Especially, if an in-place operation such as add_(1) is applied to the
input of a checkpointed partition, then the recomputation can’t recover the
original input.

	Nondeterminism:

	For example, nn.Dropout [https://pytorch.org/docs/stable/nn.html#torch.nn.Dropout] will produce different
mask in recomputation from the forward propagation due to the randomness.
This type of nondeterministic behaviors are not taken care of in torchgpipe
yet.

	Side Effects:

	Some modules such as BatchNorm update their state in forward propagation.
Hence, updated state in recomputation might not be identical to the original
state.

Restrictions

If you get any errors, check the following restrictions first.

	Sequential:

	Your module must be nn.Sequential [https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential]. For
example, the models in torchvision [https://pytorch.org/docs/stable/torchvision/index.html#module-torchvision] are not sequential. They can’t be
wrapped by GPipe directly:

>>> from torchvision.models.resnet import resnet101
>>> model = resnet101()
>>> type(model)
torchvision.models.resnet.ResNet
>>> GPipe(model, balance=..., chunks=...)
Traceback (most recent call last)
 ...
TypeError: module must be nn.Sequential to be partitioned

See the sequential ResNet example [https://github.com/kakaobrain/torchgpipe/tree/master/examples/resnet] to figure out how to make a model into
a nn.Sequential [https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential] model.

nn.Sequential [https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential] assumes that every underlying
layer takes only one argument. Calling forward(x) on
nn.Sequential(A(), B(), C()) is essentially the same as calling
C(B(A(x))). Hence, you can’t design an underlying layer with multiple
arguments:

class MyModule(nn.Module):
 def forward(self, a, b, c):
 return a + b - c

model = nn.Sequential(..., MyModule(), ...)
model(input) # FAILS!

	Tensor or Tensors:

	As we discussed above, each layer must take only one argument due to
nn.Sequential [https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential]. There is one more restriction.
Every underlying layers’ input and output must be Tensor or
Tuple[Tensor, ...]:

OK
def forward(input: Tensor) -> Tensor: ...
def forward(input: Tensor) -> Tuple[Tensor, Tensor]: ...
def forward(input: Tuple[Tensor, Tensor]) -> Tensor: ...

Error
def forward(input1: Tensor, input2: Tensor) -> Tensor: ...
def forward(input: Tensor, label: str) -> Tensor: ...
def forward(input: Tensor) -> Dict[str, Tensor]: ...
def forward(input: Tensor) -> Tuple[Tensor, str]: ...

The reason is that GPipe can’t assume how the non-tensor inputs for a
mini-batch can be split for micro-batches.

	Unique Parameters:

	GPipe places each partition on the corresponding
device. When placing a partition, the parameters of the partition are also
moved to the destination. GPipe cannot support a module with a parameter on
two or more devices:

>>> conv1 = nn.Conv2d(3, 3, 1)
>>> conv2 = nn.Conv2d(3, 3, 1)
>>> conv1.weight = conv2.weight
>>> model = nn.Sequential(conv1, conv2)
>>> model = GPipe(model, balance=[1, 1], ...)
Traceback (most recent call last)
 ...
ValueError: module with duplicate parameters in distinct children is not supported

Complex Modules

This part of the documentation discusses how to implement a complex module
compatible with GPipe. First, you should understand how
GPipe works. See Understanding GPipe.

Skip Connections

Many deep learning models, such as ResNet or AmoebaNet, contain skip
connections. There are two ways to implement skip connections. Let’s assume we
have to implement a skip connection like this:

latent = layer1(input)
latent = layer2(latent)
output = layer3(latent) + input # skip connection

To make this module sequential, we define modules for each layer. Simply,
a skip connection can be implemented by making underlying layers with
Tuple[Tensor, Tensor] parameter and return type:

class Layer1(nn.Module):
 # ┌────────────────┐
 # input --│-+-> layer1 ----│--> output
 # │ '--------------│--> skip
 # └────────────────┘
 def forward(self, input: Tensor) -> Tuple[Tensor, Tensor]:
 return layer1(input), input

class Layer2(nn.Module):
 # ┌────────────────┐
 # input --│---> layer2 ----│--> output
 # skip --│----------------│--> skip
 # └────────────────┘
 def forward(self, input_and_skip: Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tensor]:
 input, skip = input_and_skip
 return layer2(input), skip

class Layer3(nn.Module):
 # ┌────────────────┐
 # input --│---> layer3 --+-│--> output
 # skip --│--------------' │
 # └────────────────┘
 def forward(self, input_and_skip: Tuple[Tensor, Tensor]) -> Tensor:
 input, skip = input_and_skip
 return layer3(input) + skip

model = nn.Sequential(Layer1(), Layer2(), Layer3())

Because of the skip connection being represented as a normal parameter, GPipe
can move the tensors from partition to partition:

model = GPipe(model, balance=[1, 1, 1], chunks=8)

It is the most straightforward approach to implement skip connections. But
there is a disadvantage. In the above example, the skip tensor is copied to the
second device, but it is never used on the second device. Unnecessarily copying
tensor wastes time and memory.

Detecting Recomputation

Checkpointing in GPipe performs forward propagations twice. The second forward
propagation is called recomputation. This may cause a problem when a module
such as nn.BatchNorm2d [https://pytorch.org/docs/stable/nn.html#torch.nn.BatchNorm2d] updates its running
estimates of batch statistics on each forward propagation. It should not update
the running estimates again during the recomputation. To avoid updating the
running estimates twice, modules’ forward method needs be able to detect
that this is the recomputation.

It can be done by is_recomputing(). This function returns
True if called during the recomputation:

class Counter(nn.Module):
 def __init__(self):
 super().__init__()
 self.counter = 0

 def forward(self, input):
 if not is_recomputing():
 self.counter += 1
 return input

Note

deferred_batch_norm=True on GPipe will prevent
updating the running statistics twice.

API

GPipe Module

	
class torchgpipe.GPipe(module, balance, **kwargs)

	Wraps an arbitrary nn.Sequential [https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential] module
to train on GPipe [https://arxiv.org/abs/1811.06965]. If the module requires lots of memory, GPipe will be
very efficient:

model = nn.Sequential(a, b, c, d)
model = GPipe(model, balance=[1, 1, 1, 1], chunks=8)
output = model(input)

GPipe combines pipeline parallelism with checkpointing to reduce peak
memory required to train while minimizing device under-utilization.

You should determine the balance when defining a GPipe module, as balancing
will not be done automatically. The module will be partitioned into
multiple devices according to the given balance. You may rely on heuristics
to find your own optimal configuration.

	Parameters

	
	module (nn.Sequential) – sequential module to be parallelized

	balance (ints) – list of number of layers in each partition

	Keyword Arguments

	
	devices (iterable of devices) – devices to use (default: all CUDA devices)

	chunks (int) – number of micro-batches (default: 1)

	checkpoint (str) – when to enable checkpointing, one of 'always',
'except_last', or 'never' (default: 'except_last')

	deferred_batch_norm (bool) – whether to use deferred BatchNorm moving statistics
(default: False, See Deferred BatchNorm for more details)

	Raises

	
	TypeError – the module is not a nn.Sequential [https://pytorch.org/docs/stable/nn.html#torch.nn.Sequential].

	ValueError – invalid arguments, or wrong balance

	IndexError – the number of devices is fewer than the number of partitions.

	
forward(input)

	GPipe is a fairly transparent module wrapper. It doesn’t
modify the input and output signature of the underlying module. But
there’s type restriction. Input and output have to be a
Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] or a tuple of tensors. This restriction is
applied at partition boundaries too.

	Parameters

	input (tensor or tensors) – input mini-batch

	Returns

	output mini-batch

	Return type

	tensor or tensors

	Raises

	TypeError – input is not a tensor or tensors.

	
devices

	The devices mapped to each partition.

devices[-1] refers to the device of the last partition, which means
it is the output device. Probably, you need to use it to transfer the
target to calculate the loss without a device mismatch
RuntimeError. For example:

out_device = gpipe.devices[-1]

for input, target in loader:
 target = target.to(out_device, non_blocking=True)
 output = gpipe(input)
 loss = F.cross_entropy(output, target)

Inspecting GPipe Timeline

	
torchgpipe.is_recomputing()

	Whether if the current thread is under checkpoint recomputation.

	Returns

	True if it’s under checkpoint recomputation.

	Return type

	bool

See also

Detecting Recomputation

Automatic Balancing

	
torchgpipe_balancing.balance_by_time(module, canary, partitions, device, timeout)

	Balances the given seqeuntial module by elapsed time per layer.

	Parameters

	
	module (nn.Sequential) – sequential module to be partitioned

	sample (Tensor) – example input

	Keyword Arguments

	
	partitions (int) – intended number of partitions (default: 1)

	device (torch.device) – CUDA device where the module is profiled (default: any related CUDA
device or torch.device('cuda'))

	timeout (float) – profiling iterates again if the timeout (in second) is not exceeded
(default: 1.0)

	Returns

	A list of number of layers in each partition. Use it for the
balance parameter of GPipe.

	
torchgpipe_balancing.balance_by_size(module, canary, partitions, device)

	Balances the given seqeuntial module by memory usage per layer.

Note

This function relies on torch.cuda.reset_max_memory_allocated() [https://pytorch.org/docs/stable/cuda.html#torch.cuda.reset_max_memory_allocated]
which is introduced at PyTorch 1.1. Therefore, it doesn’t support
neither CPU tensors nor PyTorch 1.0.x.

	Parameters

	
	module (nn.Sequential) – sequential module to be partitioned

	sample (Tensor) – example input

	Keyword Arguments

	
	partitions (int) – intended number of partitions (default: 1)

	device (torch.device) – CUDA device where the module is profiled (default: any related CUDA
device or torch.device('cuda'))

	Returns

	A list of number of layers in each partition. Use it for the
balance parameter of GPipe.

Benchmarks

ResNet-101 Speed Benchmark

	Experiment

	Throughput

	Speedup

	naive-1

	92.539 samples/sec

	1.000x

	pipeline-1

	69.960 samples/sec

	0.756x

	pipeline-2

	137.788 samples/sec

	1.489x

	pipeline-4

	243.322 samples/sec

	2.629x

	pipeline-8

	404.084 samples/sec

	4.367x

The code is reproducible on Tesla P40 GPUs, and the experiment details
can be found in examples/resnet101_speed_benchmark [https://github.com/kakaobrain/torchgpipe/tree/master/examples/resnet101_speed_benchmark].

ResNet-101 Accuracy Benchmark

	Experiment

	Top-1 error (%)

	dataparallel-256

	22.02±0.11

	dataparallel-1k

	22.04±0.24

	pipeline-256

	21.99±0.13

	pipeline-1k

	22.24±0.19

	pipeline-4k

	22.13±0.09

The code is reproducible on Tesla P40 GPUs, and the experiment details
can be found in examples/resnet101_accuracy_benchmark [https://github.com/kakaobrain/torchgpipe/tree/master/examples/resnet101_accuracy_benchmark].

AmoebaNet-D Speed Benchmark

	Experiment

	Throughput

	Speedup

	naive-2

	14.188 samples/sec

	1.000x

	pipeline-2

	20.346 samples/sec

	1.434x

	pipeline-4

	29.074 samples/sec

	2.049x

	pipeline-8

	34.392 samples/sec

	2.424x

The code is reproducible on Tesla P40 GPUs, and the experiment details
can be found in examples/amoebanetd_speed_benchmark [https://github.com/kakaobrain/torchgpipe/tree/master/examples/amoebanetd_speed_benchmark].

AmoebaNet-D Memory Benchmark

	Experiment

	AmoebaNet-D
(L, F)

	# of Model
Parameters

	Total Model
Parameter Memory

	Total Peak
Activation Memory

	naive-1

	(6, 208)

	90M

	1.00GB

	–

	pipeline-1

	(6, 416)

	358M

	4.01GB

	6.64GB

	pipeline-2

	(6, 544)

	613M

	6.45GB

	11.31GB

	pipeline-4

	(12, 544)

	1.16B

	13.00GB

	18.72GB

	pipeline-8

	(24, 512)

	2.01B

	22.42GB

	35.78GB

Changelog

v0.0.3

Released on September 30, 2019.

	Featured:

	torchgpipe now overlaps copy and computation using the separate CUDA
streams. Previously, GPU could not compute a partition while copying
micro-batches across different GPUs because they all happened on the same
default CUDA stream.

	Other Improvements:

	
	Added support for PyTorch 1.2.

	Redesigned the internal pipeline parallelism to represent dependencies
transparently.

	Fixed the hanging issue when an exception is raised in a partition.

	Fixed the unintended size accumulation (issue #3 [https://github.com/kakaobrain/torchgpipe/issues/3] by Shiyan Deng [https://github.com/842974287]) of
balance_by_size().

	Breaking Changes:

	
	No more support for PyTorch 1.0.

	Changed type of GPipe.devices from
tuple to list.

	Removed current_microbatch. This approach turned out to be
incompatible with checkpointing.

v0.0.2

Released on June 26, 2019.

	Added support for PyTorch 1.1.

	Refined public APIs.

	Detailed documentation.

	Proper exceptions for invalid usage.

	Provided automatic balancing.

	Provided inspecting utilities: current_microbatch (DO NOT USE, deprecated
since v0.0.3) and is_recomputing()

	Reimplemented deferred batch normalization by subclassing.

v0.0.1

Released on May 14, 2019 to evaluate usability and efficiency internally.

	Provided a functional GPipe implementation, including pipeline parallelism,
checkpointing, and deferred batch normalization.

	Supported Python 3.6+ and PyTorch 1.0.

Index

 B
 | D
 | F
 | G
 | I

B

 	
 	balance_by_size() (in module torchgpipe_balancing)

 	
 	balance_by_time() (in module torchgpipe_balancing)

D

 	
 	devices (torchgpipe.GPipe attribute)

F

 	
 	forward() (torchgpipe.GPipe method)

G

 	
 	GPipe (class in torchgpipe)

I

 	
 	is_recomputing() (in module torchgpipe)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 torchgpipe

 		
 Understanding GPipe

 		
 Pipeline Parallelism

 		
 Checkpointing

 		
 Deferred Batch Normalization

 		
 User Guide

 		
 Installation

 		
 Applying GPipe

 		
 Input and Output Device

 		
 Automatic Balancing

 		
 Trade-offs

 		
 Number of Micro-batches

 		
 Checkpointing

 		
 Referential Transparency

 		
 Restrictions

 		
 Complex Modules

 		
 Skip Connections

 		
 Detecting Recomputation

 		
 API

 		
 GPipe Module

 		
 Inspecting GPipe Timeline

 		
 Automatic Balancing

 		
 Benchmarks

 		
 ResNet-101 Speed Benchmark

 		
 ResNet-101 Accuracy Benchmark

 		
 AmoebaNet-D Speed Benchmark

 		
 AmoebaNet-D Memory Benchmark

 		
 Changelog

 		
 v0.0.3

 		
 v0.0.2

 		
 v0.0.1

_static/up.png

_static/up-pressed.png

