
torchgpipe
Release 0.0.7

Kakao Brain

Sep 19, 2020

CONTENTS

1 What is GPipe? 3

2 Documentations 5
2.1 Understanding GPipe . 5
2.2 User Guide . 6
2.3 API . 14
2.4 Benchmarks . 20
2.5 Changelog . 23

3 Authors and Licensing 25

Python Module Index 27

Index 29

i

ii

torchgpipe, Release 0.0.7

A GPipe implementation in PyTorch.

from torchgpipe import GPipe

model = nn.Sequential(a, b, c, d)
model = GPipe(model, balance=[1, 1, 1, 1], chunks=8)

for input in data_loader:
output = model(input)

CONTENTS 1

https://arxiv.org/abs/1811.06965
https://pytorch.org/

torchgpipe, Release 0.0.7

2 CONTENTS

CHAPTER

ONE

WHAT IS GPIPE?

GPipe is a scalable pipeline parallelism library published by Google Brain, which allows efficient training of large,
memory-consuming models. According to the paper, GPipe can train a 25x larger model by using 8x devices (TPU),
and train a model 3.5x faster by using 4x devices.

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Google trained AmoebaNet-B with 557M parameters over GPipe. This model has achieved 84.3% top-1 and 97.0%
top-5 accuracy on ImageNet classification benchmark (the state-of-the-art performance as of May 2019).

3

https://arxiv.org/abs/1811.06965

torchgpipe, Release 0.0.7

4 Chapter 1. What is GPipe?

CHAPTER

TWO

DOCUMENTATIONS

2.1 Understanding GPipe

GPipe uses (a) Pipeline Parallelism and (b) automatic recomputation of the forward propagation during the back-
propagation, hence leverages training a large model. We refer to (b) as Checkpointing, following the well-known
terminology in PyTorch community.

2.1.1 Pipeline Parallelism

GPipe splits a model into multiple partitions and places each partition on a different device to occupy more memory
capacity. For example, we may split a model occupying 40GB of CUDA memory into 4 partitions each occupying
10GB, respectively.

This approach is called model parallelism. However, typical deep learning models are composed of sequential layers.
In other words, usually the latter layer wouldn’t work until the prior layer has finished. If a model is composed of fully
sequential layers, even if we spread the model over two or more devices, only one device can be utilized at once.

GPipe splits a mini-batch into multiple micro-batches to make the devices work as parallel as possible. It is called
pipeline parallelism. Basically, pipeline parallelism is a stack of small data parallelism. When each partition has
finished processing a micro-batch, it can toss the output to the next partition and immediately can start to work on the
next micro-batch. Now the partitions can be overlapped.

See also:

Model Parallel Best Practices in PyTorch Tutorials

There is still idle time called bubble because every partition has to wait for the first micro-batch from the prior partition.
The bubble can be reduced by choosing a smaller size of micro-batches. But usually, larger batch size can utilize GPU
more efficiently. Hence, GPU may be underutilized if too small size of micro-batches is chosen.

A faster partition should wait for adjacent slower partition. Therefore, imbalance over partitions also may cause GPU
underutilization. Note that the overall performance is determined by the slowest partition.

5

https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html

torchgpipe, Release 0.0.7

2.1.2 Checkpointing

Checkpointing is applied to each partition to minimize the overall memory consumption by a model. During forward
propagation, only the tensors at the boundaries between partitions are remembered. All other intermediate tensors are
volatilized, and recomputed during backpropagation when necessary. Specifically, hidden layers consume the memory
which is required by only a single micro-batch with checkpointing.

Checkpointing is a trade-off between performance and memory, because recomputation spends time just as much
as the forward propagation. When you use torchgpipe.GPipe, you can decide to turn off checkpointing by
checkpoint='never' option.

2.1.3 Deferred Batch Normalization

One of the goals of GPipe is transparency. GPipe shouldn’t affect existing hyperparameters and output during training.
However, if a module processes per mini-batch, not per single sample, it might be affected by GPipe since each module
could see only a micro-batch at once.

Meanwhile, batch normalization is a module commonly used in CNN. The forward propagation of this module per-
forms two procedures in training. Both the procedures are per mini-batch, not micro-batch:

1. Normalizing a mini-batch by the average and variance of the just given mini-batch.

2. Tracking moving statistics (mean and variance) of mini-batches to normalize batches in evaluation.

GPipe couldn’t provide transparency for the first procedure (normalization). Per mini-batch normalization introduces
a dependency among the micro-batches, hence it breaks the parallelism of GPipe. But the second procedure (tracking
moving statistics) could be transparent with GPipe by accumulating statistics of all micro-batches.

torchgpipe provides this functionality as deferred batch normalization. But in the current implementation, it is
slower than the vanilla batch normalization. That is why we turn off by default. If you need transparent moving
statistics, turn on by deferred_batch_norm=True option in GPipe:

model = GPipe(model, balance=[1, 1, 1, 1], chunks=8,
Turn on deferred batch normalization.
deferred_batch_norm=True)

2.2 User Guide

2.2.1 Installation

torchgpipe is available on PyPI. Install by pip:

$ pip install torchgpipe

Python 3.6+ (CPython) is required.

PyTorch 1.1+ will be installed automatically if you don’t have a satisfied one. However, we highly recommend you to
use the latest version of PyTorch.

6 Chapter 2. Documentations

https://pypi.org/project/torchgpipe

torchgpipe, Release 0.0.7

2.2.2 Applying GPipe

To train a module with GPipe, simply wrap it with torchgpipe.GPipe. Your module must be a nn.Sequential
as GPipe will automatically split the module into partitions. A partition is a group of consecutive layers that run on a
single device together. balance argument determines the number of layers in each partition. chunks argument specifies
the number of micro-batches. Input, output, and intermediate tensors must be Tensor or Tuple[Tensor, ...].
See also Restrictions for more details.

The below example code shows how to split a module with four layers into two partitions each having two layers. This
code also splits a mini-batch into 8 micro-batches:

from torchgpipe import GPipe

model = nn.Sequential(a, b, c, d)
model = GPipe(model, balance=[2, 2], chunks=8)

1st partition: nn.Sequential(a, b) on cuda:0
2nd partition: nn.Sequential(c, d) on cuda:1

for input in data_loader:
output = model(input)

GPipe optimizes training using CUDA. You should not move the module to a GPU yourself, because GPipe auto-
matically moves each partition over different devices. By default, available GPUs starting from cuda:0 are selected
in order for each partition. You can also specify GPUs to use with devices parameter:

model = GPipe(model,
balance=[2, 2],
devices=[4, 2], # Specify GPUs.
chunks=8)

Input and Output Device

Unlike a typical module, with GPipe, the input device is different from the output device except for when there is
only one partition. This is because the first partition and last partition are placed in different devices.

Therefore, you have to move the input and target to the corresponding devices. It can be done with GPipe.devices,
which holds the list of devices for each partition:

in_device = model.devices[0]
out_device = model.devices[-1]

for input, target in data_loader:
input on in_device
input = input.to(in_device, non_blocking=True)

target on out_device
target = target.to(out_device, non_blocking=True)

output on out_device
output = model(input)
loss = F.cross_entropy(output, target)
loss.backward()
...

2.2. User Guide 7

https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgpipe, Release 0.0.7

Nested Sequentials

When GPipe splits a nn.Sequential module, it regards every child of the module as a single, non-divisible layer.
However, it may be the case that some child is another sequential module and one may want to split them further.

This kind of recursive split of a nested sequential module is not intended nor supported by GPipe. It’s your respon-
sibility to flatten the module. Fortunately, this is not hard in PyTorch. Follow this code snippet which shows how a
nested sequential module can be flattened:

_3_layers = nn.Sequential(...) # len(_3_layers) == 3
_4_layers = nn.Sequential(...) # len(_4_layers) == 4
model = nn.Sequential(_3_layers, _4_layers) # len(model) == 2

def flatten_sequential(module):
def _flatten(module):

for name, child in module.named_children():
if isinstance(child, nn.Sequential):

for sub_name, sub_child in _flatten(child):
yield (f'{name}_{sub_name}', sub_child)

else:
yield (name, child)

return nn.Sequential(OrderedDict(_flatten(module)))

model = flatten_sequential(model) # len(model) == 7
model = GPipe(model, balance=[2, 3, 2], chunks=4)

Typical Model Parallelism

The typical model parallelism is a special case of GPipe. Model parallelism is equivalent to GPipe if micro-batching
and checkpointing are disabled. Set chunks=1 and checkpoint='never' for this:

model = GPipe(model, balance=[2, 2], chunks=1, checkpoint='never')

2.2.3 Automatic Balancing

It could be hard to determine the optimal balance of a model. In particular, if you are still designing a model, the
model architecture may change over time. In this case, we highly recommend torchgpipe.balance for auto-
matic balancing. This won’t give you the optimal balance, but a good-enough balance. Note that this is provided by
torchgpipe, and is not from the GPipe paper by Huang et al.

There are two balancing tools, balance_by_time() and balance_by_size(). Both are based on per-layer
profiling. Just like PyTorch JIT, you need to feed a sample input into the model. balance_by_time() traces
elapsed time of each layer, while balance_by_size() detects the CUDA memory usage of each layer. Choose
the balancing tool for your needs:

from torchgpipe import GPipe
from torchgpipe.balance import balance_by_time

partitions = torch.cuda.device_count()
sample = torch.rand(128, 3, 224, 224)
balance = balance_by_time(partitions, model, sample)

model = GPipe(model, balance, chunks=8)

8 Chapter 2. Documentations

https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
https://pytorch.org/docs/stable/jit.html

torchgpipe, Release 0.0.7

2.2.4 Trade-offs

Number of Micro-batches

Number of micro-batches has a trade-off between GPU utilization per micro-batch and total area of bubble. You need
to find the best number of micro-batches for your model.

GPU may slow down when processing many small micro-batches compared to larger micro-batches. GPU will not
be fully utilized if each CUDA kernel is too cheap to compute, hence too small micro-batches cause underutilization.
On the other hand, the area of bubble is minimized when the size of each micro-batch is minimal. Ideally, you should
choose the largest number of micro-batches that doesn’t underutilize GPUs.

As a side note, BatchNorm tends to perform worse with smaller batch size. Large number of micro-batches may affect
the final performance of model using BatchNorm negatively just like in nn.DataParallel.

Checkpointing

Checkpointing drastically helps to reduce memory usage, but the overall training would slow down by about 25%.
You can handle how to apply checkpointing on your model. There are three options:

• 'always' – Apply checkpointing over all micro-batches.

• 'except_last' (default) – Apply checkpointing except the last micro-batch.

• 'never' – Checkpointing is never applied.

Usually, checkpointing at the last micro-batch may not be useful because the saved memory will be reconstructed
immediately. That’s why we choose 'except_last' as the default option.

If you decide not to use checkpointing at all, nn.DataParallel might be more efficient than GPipe.

2.2.5 Referential Transparency

Checkpointing executes forward propagation again at backpropagation, which is called recomputation. We assume
that both the executions are identical. Hence, all layers should be referentially transparent in forward propagation.
Here are the typical cases that break referential transparency:

In-place Operations: We do not recommend using in-place operations with checkpointing. Especially, if an in-place
operation such as add_(1) is applied to the input of a checkpointed partition, then the recomputation can’t
recover the original input.

Randomness not managed by PyTorch: The randomness managed by PyTorch, including torch.
manual_seed(), torch.rand(), or nn.Dropout, is deterministically reproduced in recomputation.
But other randomnesses, such as Python standard random or numpy.random, are not. We highly recommend
to use PyTorch randomness for referential transparency.

Side Effects: Some modules such as BatchNorm update their state in forward propagation. Hence, updated state in
recomputation might not be identical to the original state.

2.2. User Guide 9

https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html#torch.nn.DataParallel
https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html#torch.nn.DataParallel
https://en.wikipedia.org/wiki/Referential_transparency
https://pytorch.org/docs/stable/generated/torch.manual_seed.html#torch.manual_seed
https://pytorch.org/docs/stable/generated/torch.manual_seed.html#torch.manual_seed
https://pytorch.org/docs/stable/generated/torch.rand.html#torch.rand
https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html#torch.nn.Dropout
https://docs.python.org/3/library/random.html#module-random
https://numpy.org/devdocs/reference/random/index.html#module-numpy.random

torchgpipe, Release 0.0.7

2.2.6 Restrictions

If you get any errors, check the following restrictions first.

Sequential: Your module must be nn.Sequential. For example, the models in torchvision are not sequen-
tial. They can’t be wrapped by GPipe directly:

>>> from torchvision.models.resnet import resnet101
>>> model = resnet101()
>>> type(model)
torchvision.models.resnet.ResNet
>>> GPipe(model, balance=..., chunks=...)
Traceback (most recent call last)
...

TypeError: module must be nn.Sequential to be partitioned

See the sequential ResNet example to figure out how to make a model into a nn.Sequential model.

nn.Sequential assumes that every underlying layer takes only one argument. Calling forward(x) on
nn.Sequential(A(), B(), C()) is essentially the same as calling C(B(A(x))). Hence, you can’t
design an underlying layer with multiple arguments:

class MyModule(nn.Module):
def forward(self, a, b, c):

return a + b - c

model = nn.Sequential(..., MyModule(), ...)
model(input) # FAILS!

Tensor or Tensors: As we discussed above, each layer must take only one argument due to nn.Sequential.
There is one more restriction. Every underlying layers’ input and output must be Tensor or Tuple[Tensor,
...]:

OK
def forward(input: Tensor) -> Tensor: ...
def forward(input: Tensor) -> Tuple[Tensor, Tensor]: ...
def forward(input: Tuple[Tensor, Tensor]) -> Tensor: ...

Error
def forward(input1: Tensor, input2: Tensor) -> Tensor: ...
def forward(input: Tensor, label: str) -> Tensor: ...
def forward(input: Tensor) -> Dict[str, Tensor]: ...
def forward(input: Tensor) -> Tuple[Tensor, str]: ...

The reason is that GPipe can’t assume how the non-tensor inputs for a mini-batch can be split for micro-batches.

Unique Parameters: GPipe places each partition on the corresponding device. When placing a partition, the pa-
rameters of the partition are also moved to the destination. GPipe cannot support a module with a parameter
on two or more devices:

>>> conv1 = nn.Conv2d(3, 3, 1)
>>> conv2 = nn.Conv2d(3, 3, 1)
>>> conv1.weight = conv2.weight
>>> model = nn.Sequential(conv1, conv2)
>>> model = GPipe(model, balance=[1, 1], ...)
Traceback (most recent call last)
...

ValueError: module with duplicate parameters in distinct children is not supported

10 Chapter 2. Documentations

https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
https://pytorch.org/docs/stable/torchvision/index.html#module-torchvision
https://github.com/kakaobrain/torchgpipe/tree/master/benchmarks/models/resnet
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

torchgpipe, Release 0.0.7

2.2.7 Complex Modules

This part of the documentation discusses how to implement a complex module compatible with GPipe. First, you
should understand how GPipe works. See Understanding GPipe.

Skip Connections

Many deep learning models, such as ResNet, AmoebaNet, or U-Net, contain skip connections. There are two ways to
implement skip connections. Let’s assume we have to implement a skip connection like this:

latent = layer1(input)
latent = layer2(latent)
output = layer3(latent) + input # skip connection

To make this module sequential, we define modules for each layer. Simply, a skip connection can be implemented by
making underlying layers with Tuple[Tensor, Tensor] parameter and return type:

class Layer1(nn.Module):
#
input -- -+-> layer1 ---- --> output
'-------------- --> skip
#
def forward(self, input):

skip = input
return layer1(input), skip

class Layer2(nn.Module):
#
input -- ---> layer2 ---- --> output
skip -- ---------------- --> skip
#
def forward(self, input_and_skip):

input, skip = input_and_skip
return layer2(input), skip

class Layer3(nn.Module):
#
input -- ---> layer3 --+- --> output
skip -- --------------'
#
def forward(self, input_and_skip):

input, skip = input_and_skip
return layer3(input) + skip

model = nn.Sequential(Layer1(), Layer2(), Layer3())

Because of the skip connection being represented as a normal parameter, GPipe can move the tensors from partition
to partition:

model = GPipe(model, balance=[1, 1, 1], chunks=8)

This seems a fairly straightforward way to implement skip connections. But there is a disadvantage. In the above
example, the skip tensor is copied to the second device, but it is never used at the device. Unnecessary copies of skip
tensors may waste time and memory. The following section introduces an alternative approach for skip connection.

2.2. User Guide 11

torchgpipe, Release 0.0.7

Long Skip Connections

The disadvantage mentioned above might be catastrophic if it involves unnecessary copies of a large tensor, and/or
over many devices. The second case often occurs when implementing long skip connections.

Let’s assume now we have 8 layers between input and output:

latent = layer1(input)
latent = layer2(latent)
latent = layer3(latent)
latent = layer4(latent)
latent = layer5(latent)
latent = layer6(latent)
latent = layer7(latent)
output = layer8(latent) + input # skip connection

With the prior approach, the skip tensor will be copied to every device, but six devices do not need it. The alternative
approach is to expose in which layer the skip tensor is produced and consumed. We introduce the @skippable
class decorator to toss the tensor directly, without needing to pass it to irrelevant layers in between. A module can
stash a tensor into the storage or pop. This functionality works perfectly fine even when the module is not wrapped by
GPipe.

The decorator declares which skip tensors would be stashed or popped in the decorated module. Let us explain how
to implement the 8-layer example above using torchgpipe.skip. Here we use the name “skip” for the skip
connection between Layer1 and Layer8:

Layer1 stashes 'skip'.
@skippable(stash=['skip'])
class Layer1(nn.Module):

...

Layer8 pops 'skip'.
@skippable(pop=['skip'])
class Layer8(nn.Module):

...

When Layer1 prepares a skip tensor, it can stash the tensor into the hidden storage by yield stash(). As you
may have noticed, we define forward() as a generator instead of a normal function:

@skippable(stash=['skip'])
class Layer1(nn.Module):

def forward(self, input):
skip = input
yield stash('skip', skip)
return layer1(input)

Similarly, Layer8 also can pop the stashed skip tensor by yield pop():

@skippable(pop=['skip'])
class Layer8(nn.Module):

def forward(self, input):
skip = yield pop('skip')
return layer8(input) + skip

Now the intermediate layers do not interact with the skip tensor at all:

class Layer2(nn.Module):
def forward(self, input):

(continues on next page)

12 Chapter 2. Documentations

https://docs.python.org/3/howto/functional.html#generators

torchgpipe, Release 0.0.7

(continued from previous page)

return layer2(input)
...
class Layer7(nn.Module):

def forward(self, input):
return layer7(input)

You can design any complex skip connections with @skippable since a skippable module could stash and/or pop
multiple skip tensors. However, there are restrictions:

• Every skip name must be unique within a sequential module.

• Every skip tensor must be stashed and popped exactly once.

Then, how can we instantiate multiple skippable modules from the same class in a sequential module? You can isolate
some skip names into a Namespace. For example, a conceptual U-Net can be designed like this. There are 3 pairs
of Encoder and Decoder:

1F. Encoder -------- Decoder -- Segment
\ /
2F. Encoder ------ Decoder
\ /
3F. Encoder ---- Decoder
\ /
4F. Bottleneck

@skippable(stash=['skip'])
class Encoder(nn.Module):

...

@skippable(pop=['skip'])
class Decoder(nn.Module):

...

ns_1f = Namespace()
ns_2f = Namespace()
ns_3f = Namespace()

model = nn.Sequential(
Encoder().isolate(ns_1f),
Encoder().isolate(ns_2f),
Encoder().isolate(ns_3f),
Bottleneck(),
Decoder().isolate(ns_3f),
Decoder().isolate(ns_2f),
Decoder().isolate(ns_1f),
Segment(),

)

Some skip connection may be conditional on input. However, @skippable doesn’t allow stash() or pop()
missing. Instead, it allows None in place of skip tensor:

@skippable(stash=['skip'])
class MaybeStash(nn.Module):

def forward(self, input):
skip = input if test(input) else None
yield stash('skip', skip)
return f(input)

(continues on next page)

2.2. User Guide 13

https://docs.python.org/3/library/constants.html#None

torchgpipe, Release 0.0.7

(continued from previous page)

@skippable(pop=['skip'])
class MaybePop(nn.Module):

def forward(self, input):
output = f(input)
skip = yield pop('skip')
if skip is not None:

output += skip
return output

Detecting Recomputation

Checkpointing in GPipe performs forward propagations twice. The second forward propagation is called recomputa-
tion. This may cause a problem when a module such as nn.BatchNorm2d updates its running estimates of batch
statistics on each forward propagation. It should not update the running estimates again during the recomputation.
To avoid updating the running estimates twice, modules’ forward method needs be able to detect that this is the
recomputation.

It can be done by is_recomputing(). This function returns True if called during the recomputation:

class Counter(nn.Module):
def __init__(self):

super().__init__()
self.counter = 0

def forward(self, input):
if not is_recomputing():

self.counter += 1
return input

Note: deferred_batch_norm=True on GPipe will prevent updating the running statistics twice.

2.3 API

2.3.1 GPipe Module

class torchgpipe.GPipe(module, balance, **kwargs)
Wraps an arbitrary nn.Sequential module to train on GPipe. If the module requires lots of memory, GPipe
will be very efficient.

model = nn.Sequential(a, b, c, d)
model = GPipe(model, balance=[1, 1, 1, 1], chunks=8)
output = model(input)

GPipe combines pipeline parallelism with checkpointing to reduce peak memory required to train while mini-
mizing device under-utilization.

You should determine the balance when defining a GPipe module, as balancing will not be done automatically.
The module will be partitioned into multiple devices according to the given balance. You may rely on heuristics
to find your own optimal configuration.

14 Chapter 2. Documentations

https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html#torch.nn.BatchNorm2d
https://docs.python.org/3/library/constants.html#True
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
https://arxiv.org/abs/1811.06965

torchgpipe, Release 0.0.7

Parameters

• module (torch.nn.Sequential) – sequential module to be parallelized

• balance (ints) – list of number of layers in each partition

Keyword Arguments

• devices (iterable of devices) – devices to use (default: all CUDA devices)

• chunks (int) – number of micro-batches (default: 1)

• checkpoint (str) – when to enable checkpointing, one of 'always',
'except_last', or 'never' (default: 'except_last')

• deferred_batch_norm (bool) – whether to use deferred BatchNorm moving statistics
(default: False, see Deferred Batch Normalization for more details)

Raises

• TypeError – the module is not a nn.Sequential.

• ValueError – invalid arguments, or wrong balance

• IndexError – the number of devices is fewer than the number of partitions.

forward(input)
GPipe is a fairly transparent module wrapper. It doesn’t modify the input and output signature of the
underlying module. But there’s type restriction. Input and output have to be a Tensor or a tuple of
tensors. This restriction is applied at partition boundaries too.

Parameters input (torch.Tensor or tensors) – input mini-batch

Returns output mini-batch

Return type tensor or tensors

Raises TypeError – input is not a tensor or tensors.

balance
The number of layers in each partition.

devices
The devices mapped to each partition.

devices[-1] refers to the device of the last partition, which means it is the output device. Probably,
you need to use it to transfer the target to calculate the loss without a device mismatch RuntimeError.
For example:

out_device = gpipe.devices[-1]

for input, target in loader:
target = target.to(out_device, non_blocking=True)
output = gpipe(input)
loss = F.cross_entropy(output, target)

chunks
The number of micro-batches.

checkpoint
The checkpoint mode to determine when to enable checkpointing. It is one of 'always',
'except_last', or 'never'.

2.3. API 15

https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#TypeError
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#IndexError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#RuntimeError

torchgpipe, Release 0.0.7

2.3.2 Skip Connections

@torchgpipe.skip.skippable([stash][, pop])
The decorator to define a nn.Module with skip connections. Decorated modules are called “skippable”. This
functionality works perfectly fine even when the module is not wrapped by GPipe.

Each skip tensor is managed by its name. Before manipulating skip tensors, a skippable module must statically
declare the names for skip tensors by stash and/or pop parameters. Skip tensors with pre-declared name can be
stashed by yield stash(name, tensor) or popped by tensor = yield pop(name).

Here is an example with three layers. A skip tensor named “1to3” is stashed and popped at the first and last
layer, respectively:

@skippable(stash=['1to3'])
class Layer1(nn.Module):

def forward(self, input):
yield stash('1to3', input)
return f1(input)

class Layer2(nn.Module):
def forward(self, input):

return f2(input)

@skippable(pop=['1to3'])
class Layer3(nn.Module):

def forward(self, input):
skip_1to3 = yield pop('1to3')
return f3(input) + skip_1to3

model = nn.Sequential(Layer1(), Layer2(), Layer3())

One skippable module can stash or pop multiple skip tensors:

@skippable(stash=['alice', 'bob'], pop=['carol'])
class StashStashPop(nn.Module):

def forward(self, input):
yield stash('alice', f_alice(input))
yield stash('bob', f_bob(input))
carol = yield pop('carol')
return input + carol

Every skip tensor must be associated with exactly one pair of stash and pop. GPipe checks this restriction
automatically when wrapping a module. You can also check the restriction by verify_skippables()
without GPipe.

Note: @skippable changes the type of the wrapped class. But currently (mypy v0.740), mypy could not
understand class decorators yet (#3135).

There are two workarounds:

1. Naively ignore type errors by # type: ignore.

2. Use skippable()() as a function instead of a decorator.

See also:

Long Skip Connections

16 Chapter 2. Documentations

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://github.com/python/mypy/issues/3135

torchgpipe, Release 0.0.7

Skippable.isolate(ns[, only=names])
Isolates a specified subset or the whole set of skip tensors into a namespace. In a single sequential module,
skip tensors with the same name are not allowed unless they are isolated by different namespaces.

Here’s an example using the same name for skip tensors twice. Each pair of Layer1 and Layer2 is
isolated with its own namespace ns1 and ns2. There is no conflict anymore:

ns1 = Namespace()
ns2 = Namespace()

model = nn.Sequential(
Layer1().isolate(ns1),
Layer1().isolate(ns2),
Layer2(),
Layer3().isolate(ns2),
Layer3().isolate(ns1),

)

When only parameter is omitted, all skip tensors are isolated. You can isolate a subset of skip tensors by
passing only parameter:

ns_alice = Namespace()
ns_bob = Namespace()

model = nn.Sequential(
...
StashStashPop().isolate(ns_alice, only=['alice']) \

.isolate(ns_bob, only=['bob']),
...

)

Parameters ns (Namespace) – namespace for isolation

Keyword Arguments only (iterable of strs) – names of specific skip tensors to be
isolated (omit this option to isolate all skip tensors declared in this module)

Returns this module itself

torchgpipe.skip.stash(name, tensor)
The command to stash a skip tensor.

def forward(self, input):
yield stash('name', input)
return f(input)

Parameters

• name (str) – name of skip tensor

• input (torch.Tensor or None) – tensor to pass to the skip connection

torchgpipe.skip.pop(name)
The command to pop a skip tensor.

def forward(self, input):
skip = yield pop('name')
return f(input) + skip

2.3. API 17

https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

torchgpipe, Release 0.0.7

Parameters name (str) – name of skip tensor

Returns the skip tensor previously stashed by another layer under the same name

class torchgpipe.skip.Namespace
Namespace for isolating skip tensors used by isolate().

torchgpipe.skip.verify_skippables(module)
Verifies if the underlying skippable modules satisfy integrity.

Every skip tensor must have only one pair of stash and pop. If there are one or more unmatched pairs, it will
raise TypeError with the detailed messages.

Here are a few failure cases. verify_skippables() will report failure for these cases:

Layer1 stashes "1to3".
Layer3 pops "1to3".

nn.Sequential(Layer1(), Layer2())
?

nn.Sequential(Layer2(), Layer3())
?

nn.Sequential(Layer1(), Layer2(), Layer3(), Layer3())
^^^^^^

nn.Sequential(Layer1(), Layer1(), Layer2(), Layer3())
^^^^^^

To use the same name for multiple skip tensors, they must be isolated by different namespaces. See
isolate().

Raises TypeError – one or more pairs of stash and pop are not matched.

2.3.3 Inspecting GPipe Timeline

torchgpipe.is_checkpointing()
Whether the current forward propagation is under checkpointing.

Returns True if it’s under checkpointing.

Return type bool

torchgpipe.is_recomputing()
Whether the current forward propagation is under checkpoint recomputation. Use this to prevent duplicated
side-effects at forward propagation:

class Counter(nn.Module):
def __init__(self):

super().__init__()
self.counter = 0

def forward(self, input):
if not is_recomputing():

self.counter += 1
return input

Returns True if it’s under checkpoint recomputation.

18 Chapter 2. Documentations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

torchgpipe, Release 0.0.7

Return type bool

See also:

Detecting Recomputation

2.3.4 Automatic Balancing

torchgpipe.balance.balance_by_time(partitions, module, sample, timeout=1.0, de-
vice=torch.device('cuda'))

Naive automatic balancing by elapsed time per layer.

sample = torch.empty(128, 3, 224, 224)
balance = balance_by_time(torch.cuda.device_count(), model, sample)
gpipe = GPipe(model, balance, chunks=8)

Parameters

• partitions (int) – intended number of partitions

• module (torch.nn.Sequential) – sequential module to be partitioned

• sample (torch.Tensor) – example input with arbitrary batch size

Keyword Arguments

• timeout (float) – profiling iterates again if the timeout (in second) is not exceeded
(default: 1.0)

• device ('cpu' or 'cuda' device) – CPU or CUDA device where each layer is
profiled (default: the current CUDA device)

Returns A list of number of layers in each partition. Use it for the balance parameter of GPipe.

Note: module and sample must be placed on the same device.

torchgpipe.balance.balance_by_size(partitions, module, input, chunks=1, param_scale=2.0, de-
vice=torch.device('cuda'))

Naive automatic balancing by CUDA memory usage per layer.

During training, required memory for parameters depends on which optimizer is used. Optimizers may use
buffers for each parameter to track optimization statistics internally, such as momentum buffer in SGD.

To get more reliable size based balance, you should specify param_scale with regard to your optimizer. The
default param_scale is 2 instead of 1 due to gradient accumulation which is necessary for every optimizer.

Follow this guide to choose correct param_scale for typical optimizers:

Optimizer param_scale Internal State
SGD 2–3 (momentum_buffer)
Adam 4–5 exp_avg, exp_avg_sq, (max_exp_avg_sq)
Adadelta 4 square_avg, acc_delta
Adagrad 3 sum
RMSprop 3–5 square_avg, (momentum_buffer), (grad_avg)

Here’s a simple example with the Adam optimizer:

2.3. API 19

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float

torchgpipe, Release 0.0.7

balance = balance_by_size(
torch.cuda.device_count(),
model,

Same size with mini-batch to train
torch.empty(1024, 3, 224, 224),

Number of micro-batches to train with GPipe
chunks=8,

4 for Adam
param_scale=4.0,

)

gpipe = GPipe(model, balance, chunks=8)
adam = Adam(gpipe.parameters())

Parameters

• partitions (int) – intended number of partitions

• module (torch.nn.Sequential) – sequential module to be partitioned

• input (torch.Tensor) – example mini-batch with the same size to train

Keyword Arguments

• chunks (int) – number of micro-batches will be used to train (default: 1)

• param_scale (float) – how many copies of parameters would be allocated for training.
It depends on optimizer. See the above guide. (default: 2.0)

• device ('cuda' device) – CUDA device where each layer is profiled (default: the
current CUDA device)

Returns A list of number of layers in each partition. Use it for the balance parameter of GPipe.

Note: module and input must be placed on the same CUDA device.

2.4 Benchmarks

Every experiment is reproducible on Tesla P40 GPUs. Follow the link to code for each benchmark.

2.4.1 Transparency

ResNet-101 Accuracy Benchmark

Batch size torchgpipe nn.DataParallel Goyal et al.
256 21.99±0.13 22.02±0.11 22.08±0.06
1K 22.24±0.19 22.04±0.24 N/A
4K 22.13±0.09 N/A N/A

20 Chapter 2. Documentations

https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

torchgpipe, Release 0.0.7

GPipe should be transparent not to introduce additional hyperparameter tuning. To verify the transparency, we repro-
duced top-1 error rate of ResNet-101 on ImageNet, as reported in Table 2(c) of Accurate, Large Minibatch SGD by
Goyal et al.

The reproducible code and experiment details are available in benchmarks/resnet101-accuracy.

2.4.2 Memory

U-Net (B, C) Memory Benchmark

Experiment U-Net (B, C) Parameters Memory usage
baseline (6, 72) 362.2M 20.3 GiB
pipeline-1 (11, 128) 2.21B 20.5 GiB
pipeline-2 (24, 128) 4.99B 43.4 GiB
pipeline-4 (24, 160) 7.80B 79.1 GiB
pipeline-8 (48, 160) 15.82B 154.1 GiB

The table shows how GPipe facilitates scaling U-Net models. baseline denotes the baseline without pipeline paral-
lelism nor checkpointing, and pipeline-1, -2, -4, -8 denotes that the model is trained with GPipe with the corresponding
number of partitions.

Here we used a simplified U-Net architecture. The size of a model is determined by hyperparameters B and C which
are proportional to the number of layers and filters, respectively.

The reproducible code and experiment details are available in benchmarks/unet-memory.

AmoebaNet-D (L, D) Memory Benchmark

Experiment baseline pipeline-1 pipeline-2 pipeline-4 pipeline-8
AmoebaNet-D (L, D) (18, 208) (18, 416) (18, 544) (36, 544) (72, 512)
torchgpipe
Parameters 81.5M 319.0M 542.7M 1.06B 1.84B
Model Memory 0.91 GiB 3.57 GiB 6.07 GiB 11.80 GiB 20.62 GiB
Peak Activation Memory Out of memory 0.91 GiB 3.39 GiB 6.91 GiB 10.83 GiB
Huang et al.
Parameters 82M 318M 542M 1.05B 1.8B
Model Memory 1.05GB 3.8GB 6.45GB 12.53GB 24.62GB
Peak Activation Memory 6.26GB 3.46GB 8.11GB 15.21GB 26.24GB

The table shows the better memory utilization of AmoebaNet-D with GPipe, as stated in Table 1 of GPipe by Huang
et al. The size of an AmoebaNet-D model is determined by two hyperparameters L and D which are proportional to
the number of layers and filters, respectively.

We reproduced the same settings in the paper with regardless of memory capacity of Tesla P40 GPUs. The reproducible
code and experiment details are available in benchmarks/amoebanetd-memory.

2.4. Benchmarks 21

https://arxiv.org/abs/1706.02677
https://github.com/kakaobrain/torchgpipe/tree/master/benchmarks/resnet101-accuracy
https://github.com/kakaobrain/torchgpipe/tree/master/benchmarks/unet-memory
https://arxiv.org/abs/1811.06965
https://github.com/kakaobrain/torchgpipe/tree/master/benchmarks/amoebanetd-memory

torchgpipe, Release 0.0.7

2.4.3 Speed

U-Net (5, 64) Speed Benchmark

Experiment Throughput Speed up
baseline 28.500/s 1×
pipeline-1 24.456/s 0.858×
pipeline-2 35.502/s 1.246×
pipeline-4 67.042/s 2.352×
pipeline-8 88.497/s 3.105×

To verify efficiency with skip connections, we measured the throughput of U-Net with various number of devices. We
chose to use U-Net since it has several long skip connections.

The reproducible code and experiment details are available in benchmarks/unet-speed.

AmoebaNet-D (18, 256) Speed Benchmark

Table 1: (n: number of partitions, m: number of micro-batches)
Experiment Throughput torchgpipe Huang et al.
n=2, m=1 26.733/s 1× 1×
n=2, m=4 41.133/s 1.539× 1.07×
n=2, m=32 47.386/s 1.773× 1.21×
n=4, m=1 26.827/s 1.004× 1.13×
n=4, m=4 44.543/s 1.666× 1.26×
n=4, m=32 72.412/s 2.709× 1.84×
n=8, m=1 24.918/s 0.932× 1.38×
n=8, m=4 70.065/s 2.621× 1.72×
n=8, m=32 132.413/s 4.953× 3.48×

The table shows the reproduced speed benchmark on AmoebaNet-D (18, 256), as reported in Table 2 of GPipe by
Huang et al. Note that we replaced K in the paper with n.

The reproducible code and experiment details are available in benchmarks/amoebanetd-speed.

ResNet-101 Speed Benchmark

Experiment Throughput torchgpipe Huang et al.
baseline 95.862/s 1× 1×
pipeline-1 81.796/s 0.853× 0.80×
pipeline-2 135.539/s 1.414× 1.42×
pipeline-4 265.958/s 2.774× 2.18×
pipeline-8 411.662/s 4.294× 2.89×

The table shows the reproduced speed benchmark on ResNet-101, as reported in Figure 3(b) of the fourth version of
GPipe by Huang et al.

The reproducible code and experiment details are available in benchmarks/resnet101-speed.

22 Chapter 2. Documentations

https://github.com/kakaobrain/torchgpipe/tree/master/benchmarks/unet-speed
https://arxiv.org/abs/1811.06965
https://github.com/kakaobrain/torchgpipe/tree/master/benchmarks/amoebanetd-speed
https://arxiv.org/abs/1811.06965v4
https://github.com/kakaobrain/torchgpipe/tree/master/benchmarks/resnet101-speed

torchgpipe, Release 0.0.7

2.5 Changelog

2.5.1 v0.0.7

Released on September 18, 2020.

Changed the license to BSD-3-Clause.

2.5.2 v0.0.6

Released on July 29, 2020.

• Updated docs.

• Added support for PyTorch 1.5.

2.5.3 v0.0.5

Released on November 29, 2019.

Featured: @skippable for efficient skip connections. With this interface, GPipe copies skip tensors directly to
the destination device.

Improvements:

• Checkpointing deterministically handles randomness managed by PyTorch.

• balance_by_size() analyzes parameters as well.

Breaking Changes:

• Moved torchgpipe_balancing module to torchgpipe.balance.

• Redesigned interface of balance_by_time() and balance_by_size().

2.5.4 v0.0.4

Released on October 8, 2019.

• Reduced GPU memory fragmentation by caching CUDA streams for copy.

• Fixed potential GPU memory violation on tuple of multiple tensors.

• Fixed potential GPU memory violation on shifted view tensors. (issue #27366 and pull request #27371 on
PyTorch)

2.5.5 v0.0.3

Released on September 30, 2019.

Featured: torchgpipe now overlaps copy and computation using the separate CUDA streams. Previously, GPU
could not compute a partition while copying micro-batches across different GPUs because they all happened on
the same default CUDA stream.

Other Improvements:

• Added support for PyTorch 1.2.

2.5. Changelog 23

https://github.com/pytorch/pytorch/issues/27366
https://github.com/pytorch/pytorch/pull/27371

torchgpipe, Release 0.0.7

• Redesigned the internal pipeline parallelism to represent dependencies transparently.

• Reduced memory usage for backpropagation by forgetting recomputation results at the right time.

• Fixed the hanging issue when an exception is raised in a partition.

• Fixed the unintended size accumulation (issue #3 by Shiyan Deng) of balance_by_size().

Breaking Changes:

• No more support for PyTorch 1.0.

• Changed type of GPipe.devices from tuple to list.

• Removed current_microbatch. This approach turned out to be incompatible with checkpointing.

2.5.6 v0.0.2

Released on June 26, 2019.

• Added support for PyTorch 1.1.

• Refined public APIs.

• Detailed documentation.

• Proper exceptions for invalid usage.

• Provided automatic balancing.

• Provided inspecting utilities: current_microbatch (DO NOT USE, deprecated since v0.0.3) and
is_recomputing()

• Reimplemented deferred batch normalization by subclassing.

2.5.7 v0.0.1

Released on May 14, 2019 to evaluate usability and efficiency internally.

• Provided a functional GPipe implementation, including pipeline parallelism, checkpointing, and deferred batch
normalization.

• Supported Python 3.6+ and PyTorch 1.0.

24 Chapter 2. Documentations

https://github.com/kakaobrain/torchgpipe/issues/3
https://github.com/842974287

CHAPTER

THREE

AUTHORS AND LICENSING

This project is developed by Heungsub Lee, Myungryong Jeong, and Chiheon Kim at Kakao Brain, with Sungbin
Lim, Ildoo Kim, Woonhyuk Baek, and Boogeon Yoon’s help. It is distributed under the 3-clause BSD license.

If you apply this library to any project and research, please cite our code:

@article{kim2020torchgpipe,
title={torchgpipe: On-the-fly Pipeline Parallelism for Training Giant Models},
author={Chiheon Kim and Heungsub Lee and Myungryong Jeong and Woonhyuk Baek and

→˓Boogeon Yoon and Ildoo Kim and Sungbin Lim and Sungwoong Kim},
year={2020},
eprint={2004.09910},
archivePrefix={arXiv}

}

25

https://subl.ee/
https://github.com/mrJeong
https://github.com/chiheonk
https://kakaobrain.com/
https://github.com/sungbinlim
https://github.com/sungbinlim
https://github.com/ildoonet
https://github.com/wbaek
https://github.com/bgyoon

torchgpipe, Release 0.0.7

26 Chapter 3. Authors and Licensing

PYTHON MODULE INDEX

t
torchgpipe, 14
torchgpipe.balance, 19
torchgpipe.skip, 16

27

torchgpipe, Release 0.0.7

28 Python Module Index

INDEX

B
balance (torchgpipe.GPipe attribute), 15
balance_by_size() (in module torchg-

pipe.balance), 19
balance_by_time() (in module torchg-

pipe.balance), 19

C
checkpoint (torchgpipe.GPipe attribute), 15
chunks (torchgpipe.GPipe attribute), 15

D
devices (torchgpipe.GPipe attribute), 15

F
forward() (torchgpipe.GPipe method), 15

G
GPipe (class in torchgpipe), 14

I
is_checkpointing() (in module torchgpipe), 18
is_recomputing() (in module torchgpipe), 18
isolate() (torchgpipe.skip.skippable.Skippable

method), 16

M
module

torchgpipe, 14
torchgpipe.balance, 19
torchgpipe.skip, 16

N
Namespace (class in torchgpipe.skip), 18

P
pop() (in module torchgpipe.skip), 17

S
skippable() (in module torchgpipe.skip), 16
stash() (in module torchgpipe.skip), 17

T
torchgpipe

module, 14
torchgpipe.balance

module, 19
torchgpipe.skip

module, 16

V
verify_skippables() (in module torchgpipe.skip),

18

29

	What is GPipe?
	Documentations
	Understanding GPipe
	User Guide
	API
	Benchmarks
	Changelog

	Authors and Licensing
	Python Module Index
	Index

